Mechanisms of N-acetylcysteine in the prevention of DNA damage and cancer, with special reference to smoking-related end-points.
نویسندگان
چکیده
Although smoking cessation is the primary goal for the control of cancer and other smoking-related diseases, chemoprevention provides a complementary approach applicable to high risk individuals such as current smokers and ex-smokers. The thiol N-acetylcysteine (NAC) works per se in the extracellular environment, and is a precursor of intracellular cysteine and glutathione (GSH). Almost 40 years of experience in the prophylaxis and therapy of a variety of clinical conditions, mostly involving GSH depletion and alterations of the redox status, have established the safety of this drug, even at very high doses and for long-term treatments. A number of studies performed since 1984 have indicated that NAC has the potential to prevent cancer and other mutation-related diseases. N-Acetylcysteine has an impressive array of mechanisms and protective effects towards DNA damage and carcinogenesis, which are related to its nucleophilicity, antioxidant activity, modulation of metabolism, effects in mitochondria, decrease of the biologically effective dose of carcinogens, modulation of DNA repair, inhibition of genotoxicity and cell transformation, modulation of gene expression and signal transduction pathways, regulation of cell survival and apoptosis, anti-inflammatory activity, anti-angiogenetic activity, immunological effects, inhibition of progression to malignancy, influence on cell cycle progression, inhibition of pre-neoplastic and neoplastic lesions, inhibition of invasion and metastasis, and protection towards adverse effects of other chemopreventive agents or chemotherapeutical agents. These mechanisms are herein reviewed and commented on with special reference to smoking-related end-points, as evaluated in in vitro test systems, experimental animals and clinical trials. It is important that all protective effects of NAC were observed under a range of conditions produced by a variety of treatments or imbalances of homeostasis. However, our recent data show that, at least in mouse lung, under physiological conditions NAC does not alter per se the expression of multiple genes detected by cDNA array technology. On the whole, there is overwhelming evidence that NAC has the ability to modulate a variety of DNA damage- and cancer-related end-points.
منابع مشابه
Histopathological Effects of Titanium Dioxide Nanoparticles and The Possible Protective Role of N-Acetylcysteine on The Testes of Male Albino Rats
Objective Titanium dioxide (TiO2) is a white pigment which is used in paints, plastics, etc. It is reported to induce oxidative stress and DNA damage. The N-acetylcysteine (NAC) was used to fight oxidative stress-induced damage in various tissues. The aim of this study was to evaluate the toxic effects of TiO2 nanoparticles by oral administration and the protective role of NAC on testes of a...
متن کاملP-120: Evaluation of the Antioxidant Effects of N-Acetylcysteine on Ischemia Damage, Apoptosis Incidence and Restoration of Ovarian Activity Following MiceOvary Heterotropic Autotransplantation
Background: Ovarian tissue transplantation is now considered as a procedure to preserve the fertility of young woman patient undergoing cancer therapy. An essential strategy to improve the efficiency of ovarian transplantation is to overcome the initial ischemia reperfusion injury and free radicals production that lead to a significant follicular loss. The aim of this study was to investigate t...
متن کاملN-acetylcysteine for lung cancer prevention.
Lung cancer arises as a focal transformation of chronically injured epithelium with cigarette smoke as one of its well recognized causes. Apart from oxidants, cigarette smoke contains several precarcinogens, and it is surprising that not every heavy smoker becomes a victim of malignant disease. This points to the interindividual variability in susceptibility to carcinogens and there are several...
متن کاملSeverity of Oxidative DNA Damage in Gastric Tissue of Smoker and Non-smoker Patients
Spring summer 2010, Vol.4, No.1 /74 Medical Laboratory Journal Severity of Oxidative DNA Damage in Gastric Tissue of Smoker and Non-smoker Patients with Dyspepsia Abstract Background and Objectives: Cigarette smoking is associated with an increase in risk of peptic ulcer and Gastro-Intestinal cancer. Toxic materials in smoke and tar have a significant role in production of carcinogenic complexe...
متن کاملcardiac damage in left breast cancer patients
Introduction :Today there is general awareness of the potential damage to the heart in left- sided (more than in rightsided) breast cancer radiotherapy. Material & Method: Historical changes in tumor and heart doses are presented here along with the impact of different RT techniques and volumes. Results: Individual and pharm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Carcinogenesis
دوره 22 7 شماره
صفحات -
تاریخ انتشار 2001